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Abstract. Sequential synthetic aperture radar (SAR) images from the ERS 1 spacecraft 
were routinely used as input to the Geophysical Processor System at the Alaska SAR 
Facility from 1992 through 1994 to produce sea ice displacement vectors on a 5-km grid. 
We have combined some 5000 of these products, consisting of nearly 700,000 displacement 
vectors, into a set of 914 strips or mosaics of ice motion that span (mostly) 3-day intervals. 
For each strip we compute the opening and closing of leads based on the change in area 
of the 5-km grid cells. We also compute the area-averaged deformation or strain 
invariants of the motion. The small-scale (several kilometer) lead activity can be 
parameterized fairly well in terms of the large-scale (several hundred kilometer) strain 
invariants. Sea ice models implicitly contain such a parameterization through their 
constitutive equations. The well-known model of Hibler (1979) that uses a viscous-plastic 
rheology and an elliptical yield curve is in good agreement with our data. The variance in 
the data about this theoretical relationship is less than that suggested by a random model 
of sea ice motion. The data also indicate that shearing deformation contributes to the 
opening and closing of leads. Models with two categories or levels of ice thickness 
generally do not take shearing deformation into account in the evolution of the ice 
concentration, nor do they redistribute ice as a result of ridging. We show how to add 
these features to two-level models. However, we argue that three-level models consisting 
of open water, thin ice, and thick ice are much better suited to the proper treatment of 
open water production, and we present such a model. 

1. Introduction 

The Arctic sea ice cover is an insulating layer between the 
ocean and the atmosphere. The opening of cracks or leads in 
the ice creates areas of open water which significantly affect the 
air-ice-ocean interaction. In winter, newly opened leads are the 
source of new ice growth, brine rejection to the ocean, and 
rapid heat transfer from the ocean to the atmosphere. Al- 
though leads account for only a few percent of the surface area, 
their contribution to the area-averaged sensible heat flux is 
comparable to that of thick ice [Maykut, 1978], making the 
open water fraction an important parameter. When conver- 
gence of the pack ice forces leads to close, the thin ice in the 
leads is piled up into pressure ridges and forced down into 
keels, increasing the ice-ocean and ice-atmosphere drag. For 
these reasons, it is important to account separately for the 
positive and negative area changes in leads when considering 
the dynamics and thermodynamics of Arctic sea ice. 

Five years ago, Fily and Rothrock [1990] addressed the prob- 
lem of making measurements of the opening and closing of sea 
ice leads from a single pair of sequential synthetic aperture 
radar (SAR) images from the Seasat satellite. Fily and Ro- 
throck [1990, p. 789] correctly predicted that "the next five 
years will produce a great quantity of high resolution imagery 
of sea ice, so we will proceed from a period of very little 
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detailed data about ice dynamics into an era of overwhelming 
amounts of data." Their work was motivated by the question: 
"How will we analyze this imagery in a way that is relevant to 
large-scale sea ice models?" The emphasis of the paper was on 
an algorithm for computing the positive and negative changes 
in the area of leads in sea ice. In the present work we analyze 
measurements of lead opening and closing from 5000 pairs of 
SAR images. Our work is motivated by the question: What is 
the proper parameterization in large-scale sea ice models for 
the opening and closing of leads in terms of the ice deforma- 
tion? We emphasize the scientific interpretation of the data, 
rather than the data analysis techniques. 

Opening is defined as the fractional increase in area (relative 
to a whole image or scene) of those leads whose areas have 
increased; closing is the fractional decrease in area of those 
leads whose areas have decreased. The difference, opening 
minus closing, is the net fractional area change or divergence 
of the scene. Area changes are assumed to occur only in leads 
and not in multiyear ice. To measure these changes, an image 
is divided up into square cells 5 km on a side. The locations of 
all the cell corners are identified in a subsequent image of the 
same region acquired several days later. This ice tracking pro- 
cedure and the resulting ice motion data are described in 
section 2. The change in lead area can then be computed either 
by counting the change in the number of lead pixels within 
each cell (using images classified by ice type) or simply by 
calculating the change in the area of each cell. A decrease in 
lead area may be due either to the closing of open water or to 
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the ridging of thin ice; our measurements cannot distinguish 
between the two. The computation of lead area changes is 
discussed in section 3, along with the computation of the large- 
scale strain invariants. 

The results presented in section 4 show that the opening and 
closing of leads depends on both the divergence and the shear 
in the ice pack. An ice cover that undergoes a pure shearing 
deformation produces 25% as much new open water as an ice 
cover that undergoes a purely divergent deformation of the 
same magnitude. Also, the variability or randomness in the 
relationship between lead activity and ice deformation is 
smaller than that suggested by a random model of sea ice 
motion [Thomdike, 1987]. Furthermore, this variability be- 
comes even smaller as attention is restricted to the most "ac- 

tive" scenes, those that undergo the largest deformations. 
Therefore the opening and closing of leads can be parameter- 
ized reasonably well in terms of the large-scale ice deforma- 
tion. 

The plastic yield curve for pack ice has been related to lead 
activity through the energetics of the ridging process [Rothrock, 
1975]. For a given yield curve this allows us to compute a 
theoretical relationship between lead activity and ice deforma- 
tion, which we can compare with the data. In section 5 we show 
that the elliptical yield curve used by Hibler [1979] in the 
viscous-plastic rheo!ogy fits the data quite well. (There are 
other yield curves that also give a good fit.) This lends confi- 
dence to the rheology, but it does not imply that the production 
of open water is being treated properly; this must be done in a 
manner consistent with the thickness distribution theory of 
Thomdike et al. [1975], as shown in section 6. 

Sea ice models attempt to predict the motion and thickness 
distribution of the ice. The thickness distribution evolves ac- 

cording to advection, ice growth and melt, and mechanical 
redistribution, in which ice of thickness zero (open water) is 
created by the opening of leads and thin ice is redistributed 
into thicker categories by ridging [Thomdike et al., 1975]. The 
ice models used in most investigations incorporate a crude 
version of the thickness distribution in which there are just two 
categories or levels of ice thickness, thick ice and thin ice. The 
thick ice is described by its concentration, and the mass balance 
is maintained by an equation for the mean ice thickness. The 
most popular model of this variety is Hibler [1979]. More de- 
tailed formulations include Thomdike et al. [1975] with 10 
levels; Hibler [1980] also with 10 levels; and Walsh and Zwally 
[1990], who base their model on Hibler [1979], but with three 
levels, although there is only one equation for the total ice 
concentration. More recently, Flato and Hibler [1995] have 
introduced a model with 28 levels that also distinguishes be- 
tween ridged ice and level ice. In general, the two-level models 
(and the three-level model) allow open water production only 
through the divergence of the ice cover. Our data show that the 
shear in the ice cover also contributes to the production of 
open water. Two-level models that assign a thickness greater 
than zero to thin ice must redistribute some thin ice into 

thicker categories. In section 6 we show how to generalize the 
equation for ice concentration to take this redistribution into 
account. The extra term is a function of both the divergence 
and the shear in the ice cover, as well as the ice concentration. 
Hibler [1984] and Flato and Hibler [1991] included a similar 
term in their modified two-level models. The size of this term 

can be significant, depending on the assumptions about how 
much ice participates in ridging. 

Some models incorporate a minimum lead fraction or max- 

imum ice concentration as an ad hoc device to maintain a 

certain amount of open water in each grid cell at all times. 
Holland et al. [1993] and Chapman et al. [1994] have found that 
ice models are very sensitive to this minimum lead fraction. 
The effect of the new redistribution term is to create a small 

source of open water that may obviate the need for a minimum 
lead fraction parameter. Furthermore, under sustained con- 
vergence of the ice pack the new term prevents the ice con- 
centration from exceeding unity. This situation was previously 
handled by capping the concentration at 1 and thickening the 
ice to conserve volume. Gray and Morland [1994] added a term 
on mathematical grounds to keep the concentration below 1, 
and they identified its asymptotic behavior. The new redistri- 
bution term derived here from the theory of Thomdike et al. 
[1975] accomplishes the same goal as Gray and Morland's term 
and shows that the original formulation of the dynamics of ice 
motion and deformation is capable of providing solutions to 
problems encountered in numerical implementations of the 
theory. 

At the end of section 6 we introduce a three-level ice model 

(thick ice, thin ice, open water) that gives a more realistic 
accounting of open water production than two-level models 
but without the complication of a full thickness distribution. 
Conclusions are summarized in section 7. 

At this point we would like to comment on the relationship 
between sea ice processes, data, and numerical models. The 
discontinuous, anisotropic behavior captured in Figure 1 is 
certainly not simulated by established ice models. Rather, 
models attempt to provide a spatially and temporally averaged 
description of real events. Even increasing the spatial resolu- 
tion of a continuous, isotropic model of the Hibler [1979] type 
would not reproduce the observed behavior. Therefore the 
small-scale (5 km) data must be collected and averaged into 
large-scale (100 km) quantities for the purposes of comparison 
with model parameterizations. We use the small-scale infor- 
mation for aggregating local area changes into large-scale 
opening and closing of the pack ice and for computing an 
area-averaged measure of the ice deformation on the same 
(large) scale. Certainly the small-scale, detailed SAR data can 
be used to study the discrete nature of sea ice processes, such 
as velocity jumps and lead orientation, but comparisons with 
established models require appropriate averaging. 

2. Ice Motion Products 

The first European Remote Sensing Satellite (ERS 1) was 
launched in July 1991 into a Sun-synchronous orbit at 98.5 ø 
inclination, providing coverage of the Arctic up to 85øN lati- 
tude. In its first 2 years, ERS 1 provided 3-day repeat coverage 
of the Arctic during the exact 3-day repeat cycle and during the 
35-day repeat cycle, when there was a drifting 3-day subcycle 
with considerable swath overlap at high latitudes. The SAR 
aboard ERS 1 images a swath 100 km wide at about 23 ø inci- 
dence angle. Data are collected and processed by various 
ground receiving stations around the world, including the 
Alaska SAR Facility (ASF) in Fairbanks. The ASF produces 
geocoded, low-resolution images, mapped to the special sensor 
microwave/imager (SSM/I) polar stereographic projection, 
that are 100 x 100 km in extent with a pixel size of 100 m. 

The Geophysical Processor System (GPS) at ASF used these 
images as input to an automatic ice-tracking algorithm [Kwok 
et al., 1990] and an automatic ice classification algorithm [Kwok 
et al., 1992]. The tracking procedure begins with a pair of 
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Figure 1. A mosaic of six ice motion products, with a total of 987 displacement vectors, showing the relative 
ice motion from March 22 to 25, 1992, at approximately 178øW between 73øN and 75øN. Northwest is to the 
right. (a) Deviations from the mean ice displacement, scaled up by a factor of 3. The mean displacement 
(about 12 km) is shown by the single vector at the top right (also scaled up by a factor of 3). The vector tails 
lie on a regular 5-km grid. There are clearly several regions of uniform motion separated by sharp disconti- 
nuities. (b) Configuration of the initially regular 5-km grid after 3 days. Most of the cells are rigid, with little 
or no deformation or area change. The cells with the greatest deformations are shaded. 

images separated in time by (typically) 3 days and assigns a 
regular array of grid points with 5-km spacing to the first 
image. The algorithm attempts to track the ice at each grid 
point to its new location in the second image, using cross- 
correlation and feature-matching techniques. The result is a 
set of corresponding tie points or, equivalently, displacement 
vectors on a regular 5-km grid. One ice motion product con- 
tains, on average, more than 200 vectors or pairs of tie points. 

The ice classification algorithm assigns each image pixel to 
one of four classes, using a maximum likelihood method and a 
look-up table of the expected mean and standard deviation of 
the backscatter of the four ice types. The classes are multiyear 
ice, first-year rough ice, first-year smooth ice, and new ice/open 

water. The result is an image product in which each pixel 
contains one of four possible numbers that represents the 
appropriate ice type for that pixel. 

Initially, we envisioned using the ice motion and ice type 
products together to compute the opening and closing of leads. 
In the end we used only the ice motion products, for reasons 
given in section 3. We combined the individual ice motion 
products into strips or mosaics up to 500 krn long. Since lead 
systems extend for hundreds of kilometers, as seen, for exam- 
ple, in advanced very high resolution radiometer (AVHRR) 
images, the purpose of the mosaicking was to match the scale 
of analysis with the scale of the physical processes. Each mo- 
saic covers about the same area as several grid cells of a typical 
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Figure 2. A map showing the locations of the 914 strips or 
mosaics of ice motion data. Alaska is at the bottom; the dashed 
circle at the top is 85øN, the approximate northern limit of 
satellite coverage. 

sea ice model. The mosaicking procedure involves several 
steps: identifying adjacent products, locating and removing 
erroneous displacement vectors, combining the data sets, and 
eliminating duplicate or overlapping data. By applying these 
steps to approximately 5000 ice motion products, we created a 
new data set consisting of 914 strips that contain nearly 700,000 
individual displacement vectors. An example of such a strip is 
shown in Figure 1. Figure l a shows the deviations from the 
mean ice displacement over a 3-day period (scaled up by a 
factor of 3), and Figure lb shows how the initially regular 5-km 
grid has deformed after 3 days. 

The spatial coverage of the 914 strips is shown in Figure 2. 
The data cover the Beaufort Sea and the western Arctic Ocean 

up to 85øN latitude. The temporal coverage extends from the 
fall of 1991 through the fall of 1992. In 93% of the strips the 
time interval spanned by the ice displacement is 3 days. The 
other 7% of the data span intervals of 6, 9, 12, and 15 days. 

We note that the analysis in this paper does not use SAR 
images directly; it uses geophysical products (ice motion) de- 
rived automatically from 10,000 SAR images. This represents a 
reduction in data volume by a factor of about 230 over the 
geocoded low-resolution images or a factor of 6400 over the 
full-resolution images. We strongly believe that automated 
geophysical processing systems are the only reasonable way to 
analyze the enormous amounts of satellite data now being 
collected. 

3. Computation of Opening, Closing, 
and Deformation 

3.1. Area Change in Leads 

Fily and Rothrock [1990] presented two methods for com- 
puting the area change in leads, with several variations on each 

method. The first method (called "lead area") requires both 
ice motion data and ice type data, such as those produced by 
the GPS. The algorithm first counts the number of lead pixels 
in a grid cell, which are those pixels labeled new ice/open water 
by the GPS classification algorithm. The ice motion data give 
the new locations of the cell corners in the subsequent image, 
and the lead pixels in the same (possibly deformed) cell are 
counted again. An increase in the number of lead pixels con- 
tributes to the opening; a decrease contributes to the closing. 
The second method (called "cell area") requires only ice mo- 
tion data. The area change of each entire cell is computed; pos- 
itive changes contribute to opening, negative changes to closing. 

We compared opening and closing measurements taken 
from 49 pairs of images, using the lead area method versus the 
cell area method. Fily and Rothrock [1990] found the lead area 
method to be more accurate, and we know that the cell area 
method overestimates the opening and closing. Cells on a rigid 
piece of ice should not change area, but a small error in the 
location of a tie point causes small area changes in the four 
surrounding cells. These area changes do not cancel, since 
increases and decreases are summed separately. The lead area 
method is less sensitive to tie point errors. Nevertheless, we 
found a high correlation (0.89) between the opening and clos- 
ing computed by the two methods, indicating that the trend 
computed by one is a good predictor of the trend computed by 
the other. Although Fily and Rothrock used the lead area 
method in their analysis of a single image pair, we use the cell 
area method for the following reasons. 

1. The GPS ice classification procedure introduces un- 
known errors into the results. Thin ice in leads can be misclas- 

sifted as multiyear ice due to frost flowers on the surface that 
increase the radar backscatter. Open water in leads can also be 
misclassified as multiyear ice due to wind roughening of the 
surface. Furthermore, the area occupied by pixels classified as 
new ice/open water is usually small, making the relative area 
change especially sensitive to errors in the classification. Fet- 
terer et al. [1994] examined the performance of the ice classi- 
fication algorithm, but they did not evaluate the accuracy of the 
new ice/open water class because of the small sample sizes in 
the 68 images they analyzed. 

2. As previously noted, the difference of opening and clos- 
ing (denoted D) is the net fractional area change or divergence 
of a scene. We compute the divergence independently, using 
the ice motion data, as described in section 3.2, and this pro- 
vides a consistency check against D. However, this computed 
divergence only explains 70% of the variance in D for the lead 
area method, whereas it explains 99% of the variance in D for 
the cell area method. The error in the computed divergence is 
small, so the inconsistency in the lead area method must arise 
in the calculation of the opening and closing, possibly from 
errors in the GPS ice classification, or because moving cell 
boundaries that are not material boundaries can cause lead 

pixels to shift from one cell to another. 
3. The cell area method is computationally simpler than 

the lead area method and does not require storing and pro- 
cessing image-type data (i.e., the classified SAR images). This 
reduces the input data volume from about 20 gigabytes to 100 
megabytes. 

Let us examine in more detail the errors in the calculation of 

the opening and closing. From now on we use the cell area 
method. Figure 3 shows the histogram of the computed open- 
ing and closing for the 914 strips of data. We want to answer 
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Figure 3. Histogram of the rates of opening and closing for 
all 914 strips of data. Closing values are displayed as negative 
numbers. The area under the histogram is 200%, because each 
strip contributes one opening value and one closing value. The 
shaded region highlights the values above the minimum level 
of significance of 0.3% per day. 

the question: What level of opening and closing is significant? 
In other words, how much opening and closing could be spu- 
riously generated by motion that is nearly rigid, in which there 
is no real lead activity? To answer this question, we identified 
the most rigid strips of data, as determined by the statistics of 
the tie point displacements (u,, vi). The variability in u i (and 
v,) for each strip can be measured by the range R u = max (u,) 
- min (u,) or by the standard deviation rru. There are 14 
strips of data for which both R• and R •, are less than 500 m. In 
these strips the largest values of rr• and rr•, are 100 m. (Recall 
that the pixel size in the images is 100 m.) Therefore these 
strips undergo almost pure translation, with no rotation or 
deformation. We find that the largest value of the opening is 
0.005, and the largest value of the closing is 0.007. Visual 
inspection of these and other strips confirms that values of 
opening and closing smaller than about 0.008 cannot be re- 
garded as meaningful. Such small fractional area changes can 
be completely accounted for by small random tie point errors. 
This is consistent with our numerical simulations of tie point 
motion, which show that random Gaussian displacements with 
a standard deviation of 100 m typically induce opening and 
closing values of about 0.008. Note that the time interval over 
which the motion occurs does not enter into the error analysis, 
which is concerned only with the relative change between the 
initial and final tie point configurations. Since 93% of the 
scenes represented in Figure 3 are derived from 3-day displace- 
ment fields, the minimum level of significance for opening and 
closing (0.008) is approximately equivalent to 0.003 per day for 
these data. The shaded region in Figure 3 highlights the values 
above this threshold. 

3.2. Deformation 

Deformation is embodied in the strain tensor •, whose ele- 
ments are composed of the spatial derivatives of the displace- 
ment field. Let (x, y) represent position and (u, v) represent 
displacement. We wish to compute the area-averaged value of 
Ou/Ox (and the other three partial derivatives) for each strip of 
ice motion data. Let A denote the total area over which the 

average is taken, and let u x denote the average value. Then 

: 5 dx dy = 5 dy ( 

where the first equation is simply the definition of the area 
average and the second equation follows from the divergence 
theorem, the integral being taken around the boundary of the 
region. We compute Ux by constructing a finite difference ap- 
proximation to Ou/O x for each cell and averaging over all cells. 
This is the discrete analog of the first equation in (1). It turns 
out, not surprisingly, that the contributions from all the inte- 
rior grid points cancel, leaving an expression equivalent to the 
discrete version of the contour integral in (1). The other partial 
derivatives (uy, Vx, vy) are computed in the same way as u x. 

Thorndike [1986] presented the above method and discussed 
the question of the existence and interpretation of the deriva- 
tives. Apparently u is a discontinuous field (see Figure 1) and 
its spatial derivatives may not exist along zones of deformation. 
However, the jumps in u are all finite, and the contour integral 
in (1) is well defined, even if Ou/Ox does not exist in the limit 
as the grid spacing goes to zero. The computed value of Ux 
from the contour integral in (1) does depend on the grid 
spacing, but since u is approximately a piecewise linear func- 
tion which is very well resolved by the current grid spacing of 
5 km, the discretization error is small. A denser sampling of u 
would not change Ux by much. The net result is that these 
area-averaged derivatives are meaningful quantities that char- 
acterize spatial changes in the displacement field in an average 
or large-scale sense, even though that field may have finite 
jumps. 

The area-averaged derivatives are combined to form two 
large-scale strain invariants: 

divergence: • = Ux + vy (2) 
shear = 

which are the sum and difference of the principal values of 
Alternatively, the polar form of these invariants may be used: 

• = x/• + • 0 = arctan (•/•). (3) 

The quantity is the magnitude of the deformation, and 0 
indicates the relative contributions of divergence and shear: 
pure divergence (0 = 0ø), uniaxial extension (0 = 45ø), pure 
shear (0 = 90ø), uniaxial compression (0 = 135ø), and pure 
convergence (0 = 180ø). The quantities ei, /•II, I1, and 0 are all 
dimensionless. We can divide the first three by the time inter- 
val At over which the displacements (u, v) occur to obtain the 
rates of divergence, shear, and deformation. Figure 4 shows 
histograms of these rates and of 0 for all 914 strips of data. The 
histograms can be approximated fairly well by Gaussian distri- 
butions, as shown. 

Small tie point errors propagate into the calculation of u x 
and the other derivatives and hence into the strain invariants. 

However, unlike the errors in opening and closing, which are 
always biased toward larger magnitudes, the contributions to 
the error in u x can cancel. Therefore the strain invariants are 
less sensitive to tie point errors, and they can be determined 
more accurately. Considering the 14 strips of data whose mo- 
tion is almost perfectly rigid, as described at the end of section 
3.1, we find that the largest value of is 0.003. We adopt this 
figure as the level of significance or error estimate in the 
calculation of Il. 
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Figure 4. Histograms of the strain rate invariants from 914 strips of data: (a) divergence; (b) shear; (c) Ie[, 
which is a measure of the magnitude of deformation; and (d) 0, which is a measure of the relative contributions 
of divergence and shear. The mean/• and standard deviation o- are included. The curves in Figures 4a and 4d 
are the Gaussian distributions with the same mean and standard deviation as the data. The curves in Figures 
4b and 4c are the positive halves of the Gaussian distributions with mean 0 and variance/•2 + 0.2. 

4. Analysis and Results 
The parameterization of lead opening and closing in terms 

of ice deformation was first presented by Thorndike et al. 
[1975]. The opening and closing were postulated to be directly 
proportional to the strain I1, with the multiplier being a func- 
tion of the type of deformation via 0: 

opening = I1o(0) closing = (4) 

where no(O) - ar(O) = cos 0 in order that the difference of 
the opening and closing gives the divergence ei. Since we have 
computed values of opening, closing, I1, and 0 for each strip of 
ice motion data, we can examine the functions ar( 0 ) and no(0) 
empirically by plotting (opening)/lel versus 0 and (closing)/lel 
versus 0. The fraction (opening)/lel is very sensitive to errors in 
I•1 when I•l is small, so we impose a minimum cutoff value on 

in order to restrict the error. Let 8 = +_0.003 be the error in 
the estimate of I1, as discussed in section 3.2. Ignoring for the 
moment the error in the opening, we have 

opening (opening)( 1 ) (opening• + a - a + 3w el = ) f (5) 
where the first factor on the right is the true value and the 
second factor f is the error. If we require 0.9 < f < 1.1, then 

this implies > 0.03. This restriction has the effect of screen- 
ing out those strips of data for which there is not much "ac- 
tion." This is exactly our intent anyway; we only want to ex- 
amine the relation (4) when the "signal" (lead activity) is 
strong relative to the "noise" (uncertainties in computed val- 
ues). 

Now let 3' = 0.008 be the error in the estimate of the 
opening, as discussed in section 3.1. Then is the error in 
(opening)/le[, and it is no 1.arger than 0.008/0.03 = 0.27. With 
the additional 10% error due to the factor f in (5) the total 
estimation error in (opening)/le I is no larger than 0.3 for the 
restricted set of data in which > 0.03. Furthermore, as we 
narrow our attention to the more active displacement fields by 
increasing the cutoff threshold for above 0.03, the estima- 
tion error decreases. The size of this error will become more 

meaningful shortly when we look at the variability in (open- 
ing)/lel itself. 

Figure 5 shows (opening)/lel and (closing)/lel versus 0 using 
data from the 342 strips for which > 0.03 and for which the 
time interval At of the ice motion is 3 days. The data have been 
grouped into 5 ø bins of 0, and the mean for each bin is plotted 
as a solid dot. A single standard deviation has been calculated 
from all the deviations of the data around these means. This 

standard deviation (0.09) is plotted as a bar above and below 
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Figure 5. (a) Opening/l•l and (b) closing/l•l versus 0, using data from the 342 strips for which > 0.03 and 
for which the time interval/xt of the ice motion is 3 days. The data have been grouped into 5 ø bins of 0, and 
the mean for each bin is plotted as a solid dot. A single standard deviation has been calculated from all the 
deviations of the data around the appropriate means. This standard deviation (0.09) is plotted as a bar above 
and below the mean values. We note that 98% of these data lie in the range 45 ø < 0 < 135 ø, with only 1% in 
each tail of 0; pure divergence or convergence is very rare. The curves that pass near the data are derived from 
the elliptical yield curve for pack ice used by Hibler [1979]. The outlier at 0 = 12 ø, which comes from a single 
strip of data, appears to be due to tie point errors that boost the opening and closing values without affecting 

much. 

the mean values. We note that 98% of the data lie in the range 
45 ø < 0 < 135 ø, with only 1% in each tail of 0; pure divergence 
or convergence is very rare. The curves that pass near the data 
are derived from the elliptical yield curve for pack ice used by 
Hibler [1979] and will be explained in section 5. Fily and 
Rothrock [1990, Figure 9] show a figure similar to our Figure 5, 
but theirs contains only five data points. Now that we have 
hundreds of data points, the tight relationship between lead 
opening and ice deformation is more apparent. This relation- 
ship holds equally well regardless of the season or the length of 
the strip of data, which varies from about 100 to 500 km. 
Notice that even in pure shear (0 = 90 ø) the ratio of opening 
to is about 25%. 

Thorndike [1987] developed a model of sea ice motion in 
which leads are randomly positioned according to a Poisson 
distribution and the velocity discontinuities across leads have a 
Gaussian distribution. He used this Poisson-Gauss (PG) model 
to compute the opening of leads and the ice deformation. He 
found that for a given range of 0 the distribution of (opening)/ 

is quite broad. We compare the distribution of (opening)/l• I 
in the data for the range 85 ø < 0 < 95 ø to Thorndike's [1987, 
Figure 3, curve b] distribution for the case of pure shear. The 
results are summarized in Table 1. The first line is the PG 

model, and the numbers in the three rightmost columns are 
estimated from Thorndike's figure. The remaining three lines 
in Table 1 are derived from our data, using only those scenes 
for which is greater than the given threshold. 

Comparing the PG model to the data with no restrictions on 
(first two lines of the table), we see that the two distributions 

of (opening)/l•l have about the same maximum values (6 and 
5.7), but the peak of the data distribution is at a much smaller 
value (0.25) than that of the PG distribution (1.8), and the 
shape of the peak is much sharper and narrower for the data 
(0.4) than for the PG model (2). Looking at the third line of 
Table 1, we see that by eliminating the four scenes with the 
smallest values of I1, which are smaller than the measurement 
error in I•l, the maximum value of (opening)/l• I is reduced by 
a factor of 2. The tail of the distribution is extremely thin. A 
further restriction on that eliminates half of the scenes 
(fourth line of Table 1) sharpens the distribution by a factor of 

2 and drastically reduces the maximum value without shifting 
the location of the peak. All of this implies that if the relation- 
ship between lead activity and ice deformation is considered to 
be the result of a random process, then that process has a small 
variance and that variance decreases as the magnitude of the 
ice deformation increases. 

5. Plastic Rheology of Sea Ice 
The momentum equation for sea ice contains a term for the 

internal ice stress, and this depends on the strain rates via the 
constitutive equations, which embody the material properties 
of the ice. One possible constitutive relation for sea ice is the 
viscous-plastic formulation used by Hibler [1979] in his dy- 
namic thermodynamic model, in which the ice behaves like a 
viscous fluid at very small strain rates and like a plastic material 
at normal strain rates. The stress-strain rate relationship can be 
written very simply as 

where o' I is the compressive stress, C is the bulk viscosity, O'II is 
the shear stress, q is the shear viscosity, P is the compressive 

Table 1. Properties of the Distribution of (Opening)/l•l for 
Shearing Deformations, Computed From the Poisson-Gauss 
Model and From Our Data, With Various Thresholds of I•l, 
Below Which Data Are Not Used 

Width at 

Number Half- 

of Maximum Peak Peak 
Case Threshold Scenes Value Location Height 

PG 0 many 6 1.8 2 
Data 0 186 5.7 0.25 0.4 
Data 0.003 182 2.9 0.25 0.4 
Data 0.03 89 0.74 0.25 0.2 

Here is the magnitude of deformation, PG is the Poisson-Gauss 
model, and "data" refers to this paper. The measurement error in 
is estimated at 0.003. The distributions derived from our data are much 
narrower than that of the Poisson-Gauss model. 
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Figure 6. (a) The same data as in Figure 5a, but without grouping the data into bins of 0. Each strip of ice 
motion data generates one point. The three curves correspond to the functions ao(O) derived from the 
elliptical yield curve with aspect ratios e = 1 (top [Thomdike et al., 1975]), e = 2 (middle [Hibler, 1979]), and 
e = • (bottom [Flato and Hibler, 1992]). (b) Similar to Figure 6a, but the threshold on lel has been raised to 
0.07, leaving data from the 67 most active scenes. The four curves correspond to (from top to bottom) e = 
1, 2, 3, and •. 

strength of the ice, and/h and •II are the divergence and shear 
of the velocity field. (The "dot" distinguishes them from the 
divergence and shear of the displacement field, as in section 
3.2.) The viscosities s r and r• are chosen such that plastic failure 
occurs when the state of stress lies on the elliptical yield curve 

( rr, + P/2) 2 (o-,,) 2 
(p/2)2 + (P/2e)2 = 1 (7) 

where e is the ratio of the major axis to the minor axis and, 
additionally, r• = sr/e 2. Hibler [1979] used e = 2, and 
Thomdike et al. [1975] implicitly assumed e = 1 (a circle). In 
the limit as e --> •, the ellipse becomes flattened into a line 
segment; this is the cavitating fluid rheology [Flato and Hibler, 
1992], in which the ice does not resist shearing (r• = 0) or 
divergence but does resist convergence. 

Rothrock [1975] showed how to associate a yield curve with 
the function at(0) that describes ridging. The appropriate 
function associated with the yield curve (7) is 

• • x/(COS 2 O) + (sin 20)/e 2 (8) O•r(0) --' -- • COS 0 q- • 
and the function that describes opening is a o(O) = cos 0 + 
at(0). These functions are plotted in Figure 5 for the case e = 
2. The data used in Figure 5 for (opening)/lel are plotted in full 
in Figure 6a, without grouping them into bins of 0. In addition, 
the three functions a o ( 0 ) corresponding to the three cases e = 
1 (top curve), e = 2 (middle curve), and e = • (bottom curve) 
are also plotted. Recall that these data are restricted to the 342 
strips (out of the 848 strips with At = 3 days) in which > 
0.03 in order to keep the error in (opening)/le I from dominat- 
ing the signal. 

Figure 6b is similar to Figure 6a, but the threshold on has 
been raised to 0.07, leaving the 67 most active strips. Four 
curves are plotted in Figure 6b, corresponding to e = 1, 2, 3, 
•. Figures 5 and 6 show that there is good agreement between 
the data and the opening implied by the elliptical yield curve 
with e = 2. This lends a degree of confidence to the plastic 
rheology, but two important points must be noted. First, other 
yield curves besides the ellipse can give a good fit to the data. 
For example, the "parabolic lens" [Rothrock, 1975] gives rise to 
a function at(0) that is nearly the same as that generated by 
the ellipse with e = 2. The ellipse and the parabolic lens imply 
different plastic behavior of the ice in divergence and conver- 

gence, but the data do not allow us to distinguish between the 
two yield curves. The second important point is that although 
the rheology in an ice model may give rise to an "opening" 
curve that agrees with the "opening" data (as in Figures 5 and 
6), the model may not necessarily treat open water production 
consistently in its equation for ice concentration. We discuss 
this more fully in section 6. 

The cavitating fluid rheology is thought to be appropriate for 
large-scale climate studies with monthly averaged forcing 
fields, rather than daily fields [Flato and Hibler, 1992]. Most of 
our ice motion data are for time intervals At of 3 days, but 
some of the data spans intervals of 6, 9, 12, and 15 days. The 
shape of the theoretical opening curve a o ( 0 ) derived from the 
elliptical yield curve depends on the parameter e, the aspect 
ratio of the ellipse. In an effort to test the cavitating fluid 
approximation, we computed the values of e that give the best 
fit of ao(O) to the data for different intervals At, but there is 
no apparent trend in e with increasing At. Instead, we find an 
increasing trend in e as increases, with e leveling off just 
above 2 for > 0.05. of course, I•l and At should increase 
together, but there is a large variability in the relationship 
between the two, at least for periods up to 15 days. A larger At 
does not guarantee a larger in any one instance, only in the 
mean; and the trend in the mean value of lel is clear (Table 2). 
A least squares fit in log-log space gives 

mean Il- 0.018Atø'sø (9) 

Table 2. The Magnitude of Ice Deformation el As a 
Function of the Time Interval Over Which That 

Deformation Is Measured At 

Number 

At, Mean of 
days el Scenes 

3 0.030 848 
6 0.046 31 

9 0.050 20 
12 0.060 8 
15 0.070 7 

Each value of e is an average over the indicated number of scenes. 
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with a squared correlation of 0.98. The square root depen- 
dence of the deformation on the time interval is reminiscent of 

a two-dimensional random walk process. Dividing through by 
At gives the mean strain rate, and setting At - 30 days gives 
a monthly mean strain rate of about 0.33% per day, which is 
consistent with monthly mean values of the large-scale strain 
rate invariants computed by optimal interpolation from buoy 
displacements (R. Moritz, personal communication, 1994). In 
order to test whether the cavitating fluid model gives a rea- 
sonable approximation to monthly data, we would need a large 
number of scenes showing deformations of 0.018(30) •/2 = 10% 
or more, or with At of the order of 30 days, which we do not 
have. 

Integrating (12) over the range of thin ice (0 -< h -< ho) gives 
the more general term •t/thin that should replace the source 
term •i in (11): 

a0 

- • + I•l•r(0)w (14) 

since Il[ao(0) - -- d(opening - closing)/dt: •i. 
This implies that an extra term should be added to the right- 
hand side of (10): 

•I/thick : -I•l.r(0)w. (15) 

6. Model Parameterizations of Opening 
and Closing 

6.1. Two-Level Models 

In models of ice dynamics with two levels of ice thickness, 
such as those of Hibler [1979] and others, the equation for the 
concentration A of the thick ice is 

DA/Dt = -•/1 + S• (10) 

where D/Dt is the material derivative and S.4 represents the 
thermodynamic terms. (Hibler adds a diffusion term for nu- 
merical stability; this does not affect our argument). The di- 
vergence of the velocity field /•I is usually written as V ß u, but 
we retain the notation of sections 3-5. The concentration of 

the thin ice or open water is 1 - A, and (10) implies 

D(1 -.4) 
Dt = -•(1-A) + •-SA (11) 

which shows that the open water has a source term, •I; but the 
data in Figure 6 show that the source term should depend on 
the shear in the velocity field •i•, as well as the divergence •i- 
Even when the ice is converging (0 > 90ø), there is still some 
opening of leads. The source term can be generalized to in- 
clude shear, as follows. 

Equations (10) and (11) can be derived in a slightly more 
general form from the ice thickness distribution equation of 
Thorndike et al. [1975] by integrating it over the appropriate 
range of thicknesses. The new source term in (11) comes from 
integrating the redistribution term ½ in the thickness equation: 

½: Ikl[.o(O)a(h) + Or(O)w(h, (12) 

where h is the ice thickness, 8(h) is the Dirac delta distribu- 
tion, w(h, #) is a function called the "ridging mode," and # = 
#(h) is the ice thickness distribution. The functions ao( 0 ) and 
%(0) are the same as those introduced in (4). The ½ term 
specifies how ice thickness is redistributed by opening and 
ridging. The factor 8(h) indicates that opening creates ice of 
zero thickness. The factor w(h, #) describes the ice involved in 
ridging: it is the normalized difference between the distribution 
of ice that ridges and the distribution of the newly ridged ice; 
its integral over all h is - 1 [Thorndike et al., 1975; Hibler, 1980]. 
Let thin ice have h -< h o, and define 

W: 1 q- fo hø w(h, g) dh. (13) 

In particular, using the %(0) from (8) associated with the 
elliptical yield curve, 

1 ( A -- • I) W •I/thick -- 1 •t/thin = •:1 q- • -- --j(A -- •,)W (16) 
where A = (•:i 2 + •i2i/e2) 1/2 and e is the aspect ratio of the 
elliptical yield curve. (This is the same A defined by Hibler 
[1979, 1980]). Equation (16) shows how the shear/•II enters the 
redistribution term for thick ice (•t/thick) that should be ap- 
pended to (10) for the ice concentrations4. The corresponding 
redistribution term for open water (•t/thin) is greater than ei; 
more open water is created than is indicated simply by the net 
divergence. The special case ho = 0(W = 1) gives the largest 
possible value of •t/thin. If W is taken to be zero in (14) and 
(15), as in the standard two-level models, then no source term 
should be added to (10), and the open water source term is just 
the divergence •i. Notice that this implies a very particular 
value for h o, which would be defined by (13). 

The evaluation of W for the case ho > 0 requires a brief 
digression into the ice thickness distribution theory of 
Thorndike et al. [1975] applied to two-level models. First, the 
conservation of ice volume in two-level models is enforced 

_ 

through an equation for the mean ice thickness h' 

D•/Dt = -•,• + Sh (17) 

where Sh represents the thermodynamic terms. If the thick ice 
has thickness H, then • = (1 -.4)(0) + (.4)(H), and so 
H - •/A. The ice thickness distribution g(h) then consists of 
two spikes, one for ice of thickness 0 and one for ice of thick- 
ness H: 

g(h) : (1 -n)a(h) + na(h - H). (18) 

Changes in the areal extent of ice affect the area under the 
spikes, and changes in the ice thickness affect the location of 
the second spike. If ridging were allowed, for example, by the 
inclusion of the term •t/thic k (equation (16)) into (10) for the ice 
concentration, then a ridging event would cause the second 
spike to move to the right (increasing H) and shrink in area 
(decreasing A) in such a way that AH-- h = constant. 

Using (18) and following the development of the ridging 
mode w(h, g) of Thorndike et al. [1975], we find that 

fo -A W -- 1 - b(G) dG (19) 

where b(G) is the weighting function that characterizes the 
range of ice thicknesses that participate in ridging. The func- 
tion b(G) is monotone decreasing (thicker ice is less likely to 
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participate in ridging than thinner ice) and its integral over all 
G is 1. Thorndike et al. [1975] used the linear form 

b(G) •-• 1- G-< G* = (20) 
0 G>G* 

where G* -- 0.15 is the fraction below which all ridging 
occurs. Substituting (20) into (19) leads to 

1 (• 1 - A -< G* 
0 I-A>G*. 

Finally, referring back to (16), the form of the mechanical 
redistribution terms %I/thin and %I/thic k can be understood as 
follows. If the concentration of open water (1 - A) exceeds 
the threshold G*, then no ridging occurs and %I/thic k -- 0. If the 
concentration of open water is less than G*, then ridging 
reduces the areal fraction of thick ice (%I/thic k < 0) and in- 
creases the areal fraction of open water by an equivalent 
amount. The additional source of open water depends on the 
shear k• through the term A, and it depends on the open water 
concentration through the factor W. 

To give a numerical example, consider the case of pure shear 
(• = 0) and 5% open water. Then %I/thin = (•/2e)(2/3) 2 
With e = 2 and k• - 1%/day the source term for open water 
is about 0.1%/day. 

Hibler [1984] recognized the need for an additional source of 
open water due to shearing deformation. (His I - P is exactly 
the same function as our W.) Flato and Hibler [1991] used a 
weighting function b (G) proportional to e - • r; (with constant 
k = 20), resulting in W = e -•'(I-•4) (their KA). This form 
was chosen for consistency with their parameterization of the 
ice strength. In these two papers the redistribution term is 

- 2, which differs from our q•thick (equation (16)) 
only by the absolute value around •l. Their term was only 
meant to account for the effect of pure shearing deformations, 
so it is symmetric with respect to el. Our redistribution term, 
which is derived from the theory of Thorndike et al. [1975], is 
asymmetric with respect to e•, reflecting the fact that less open 
water would be removed by convergent motion than would be 
gained by divergent motion of the same magnitude. This is 
simply due to the interlocking geometry of floes and leads. Of 
course, a larger and larger force would be required to maintain 
a constant convergent motion, since the pack ice strengthens 
with increasing concentration and thickness. 

There are two important consequences of the redistribution 
term in the concentration equation, which we write as 
DA/Dt = -ki A + %I/thic k (ignoring the thermodynamic term 
for this discussion). The first consequence is that more open 
water is produced than in the standard two-level formulation, 
because %I/thic k is a sink of thick ice, hence a source of open 
water. This may obviate the need for a minimum lead fraction 
parameter, which is inserted by some models as a threshold 
below which the open water concentration is not allowed to 
fall. In fact, it is exactly the mechanism of open water produc- 
tion through small-scale opening and closing of the ice that the 
minimum lead fraction is meant to parameterize [Chapman et 
al., 1994]. The second consequence of the redistribution term 
is that the ice concentration cannot exceed unity. In the stan- 
dard two-level model, under sustained convergence it is possi- 
ble for A to become bigger than 1. In this case, A is reset to I 

"" --. 

I 

Figure 7. Graphical solution of equation (22) for the equi- 
librium open water concentration, I - A, for different types of 
constant ice deformation characterized by 0. The dashed lines 
represent the left-hand side of (22) for two values of 0. The 
solid curve is the right-hand side of (22) for the functio•n W 
given by (21). When 0 < 90 ø (divergence), the only solution is 
I - A : 1 or no ice. When 0 > 90 ø (convergence), the 
equilibrium open water concentration (vertical dotted line) is 
between 0 and G* 

and the ice thickness is increased instead, to conserve ice 
volume. This is essentially a redistribution process that turns 
on when A reaches 1. Gray and Motland [1994] formulated a 
slightly more general two-level model in which A approaches 1 
asymptotically under sustained convergence, with the rate be- 
ing controlled by a model function. This function can now be 
identified with our redistribution term. In addition, we can 
compute the equilibrium ice concentration under different 
types of constant ice deformation. Setting DA/Dt to zero gives 
--•I A q- %I/thick ---- 0. Using • = cos 0 and the general form 
of •rthic k from (15), we have 

cos 0 

- a.( 0• A = W. (22) 
Recall that W depends on A, as in (21) for example. The 
left-hand side of (22) is a family of lines with parameter 0. 
Figure 7 shows the solution of (22) for A (or I - A), in which 
the left-hand side is plotted with dashed lines for two values of 
0 and the right-hand side is plotted as a solid curve for the W 
of (21). When 0 < 90 ø (divergence), the only solution is I - 
A = 1 or no ice. When 0 > 90 ø (convergence), the equilibrium 
open water concentration (vertical dotted line) is between 0 
and G *. For example, using the ar( 0 ) from (8) associated with 
the elliptical yield curve and the parameter values e = 2, 
G* : 0.15, and 0 - 135 ø (uniaxial compression), the equi- 
librium open water concentration is about 0.5%. Under pure 
convergence (0 = 180ø), I - A goes to 0, and under pure shear 
(0 = 90ø), I -A goes toG*. 

A two-level model with a redistribution term, such as the 
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one described here, may be an improvement over the standard 
two-level model, but it still suffers from the defect that it must 
reduce the area of thick ice to compensate for the additional 
open water. However, it is the area of thin ice, not thick ice, 
that should decrease when ridging and open water production 
occur. Two-level models do not distinguish between open wa- 
ter and thin ice. Therefore a three-level model consisting of 
open water, thin ice, and thick ice, with two concentration 
equations, might provide a more realistic treatment without 
adding the complication of a full thickness distribution. 

6.2. A Three-Level Model 

Let A1 and A2 be the concentrations of thin and thick ice, 
and let Ao : 1 - A1 - A2 be the concentration of open 
water. Let h o be the thickness that separates open water from 
thin ice, and let h l separate thin ice from thick ice. (Reason- 
able values might be ho = 5 cm and h• = 50 cm). The 
redistribution terms in the equations for A • and A 2 are of the 
form •l = I•:la,(0)W1 and •2 = I•[a•(0)w2, where 

W• = w(h, g) dh W2: w(h, g) dh (23) 
0 

and w(h, g) is again the ridging mode. Using the viscous- 
plastic rheology and the a,0) from (8) associated with the 
elliptical yield curve, the concentration equations for thin and 
thick ice are then 

DA • 
Dt 

1 

- -k4, + s, + 5(a - (24a) 

DA 2 
Dt 

1 

= -k/t2 + S2 + 5(zX - k•)W2 (24b) 

where S 1 and S2 are thermodynamic terms. Extending (18) to 
the present three-level model, we assume an ice thickness 
distribution of the form 

g(h) : Aob(h) + A,b(h - H,) + A26(h - H2) (25) 

where H 1 and H 2 are the thicknesses of thin ice and thick ice. 
Following the development of the ridging mode w(h, g) of 
Thorndike et al. [1975], we can evaluate W1 and W2 using the 
thickness distribution of (25) and the linear weighting function 
of (20). The result, written in terms of auxiliary functions V• 
and V2, is 

W, = -5(V•- V2)/4 W2 = (V•- 5V2)/4 (26) 

where (analogous to (21)) 

1 - Ao-<G * 
V• = 

0 Ao>G* 

V2 = [1- 
0 

Ao +A•] 2 G* Ao + A• -< G* 
A0 + A• > G*. 

(27) 

Since A 0 - 1 - A• - A 2, (24a), (24b), and (26) imply that 
the concentration of open water is governed by 

DA o 
Dt • (/x - •)V• --= -k•4o + (-S• - S:• + k• + • (28) 

which shows that the source term for open water is Wo = •:• + 
•(zX - •h)V•. This term is greater than •:• when the amount of 
open water is small (A o < G*), because shearing deforma- 
tion (which enters through the term zX) also contributes to the 
creation of open water. 

To give a numerical example, suppose A o = 0.05, A o + 
A• = 0.15, and G* = 0.15. Then V• = 4/9 and V 2 = 0, so 
W• = -5/9 and W2 -- 1/9. For the case of pure shear (•h = 
0) the redistribution terms for open water, thin ice, and thick 
ice are then Wo = (•:n/2e)(4/9), W• = (-5/4)Wo, and W2 = 
(1/4)W o. These relationships can be understood in terms of the 
following hypothetical scenario. Consider a lead covered by 
thin ice whose area is at least five units. Suppose a new lead 
forms nearby (within the same material element or grid cell), 
creating four units of open water and forcing the first lead to 
close. Four units of the thin ice are piled up into a pressure 
ridge that occupies one unit of area. The net area change 
(divergence) of the cell is zero; four units of open water are 
gained, and five units of thin ice are transformed into one unit 
of thick (ridged) ice. Under this scenario the standard two- 
level models would show no open water production and no 
ridging. A modified two-level model with a redistribution term, 
as in section 6.1, would give four units of new open water and 
a loss of four units of thick ice. 

Qualitatively, the concentration equations (24a), (24b), and 
(28) show that deformation of the ice pack is a source of open 
water through the opening of new leads, and ridging is a sink 
of thin ice and a source of thick ice. The thermodynamic terms 
replenish the thin ice by freezing the open water (during winter 
conditions) and add to the thick ice through continued growth 
of the thin ice. 

To complete the three-level model, we need to specify how 
the ice thicknesses H 1 and H 2 evolve. Instead of relating H l 
and H 2 to a single average ice thickness, we choose to keep 
track of these physical thicknesses directly. Their evolution 
equations are 

DH• DH2 
Dt = f• D• --- f2 + R2 (29) 

where f• and f2 are thermodynamic growth rates and R2 is a 
term due to ridging. The first part of (29) says that the thick- 
ness of a material element of thin ice can only change due to 
thermodynamic growth and melt. (When thin ice ridges, it is no 
longer thin ice; this is accounted for by the redistribution terms 
in the concentration equations, and it does not change the 
thickness of the remaining thin ice.) The second part of (29) 
allows the thickness of thick ice to change thermodynamically 
and mechanically. The term R 2 represents the change in the 
thickness of thick ice due to the addition of ridged (formerly 
thin) ice. Conservation of ice volume dictates the form of R 2. 
The volume of a material element can only change due to 
thermodynamics; it cannot change due to motion, deforma- 
tion, or ridging. In other words, D(A•H• + A2H2)/Dt can 
only depend on thermodynamic terms. Substituting (24a), 
(24b), and (29) into this expression and setting the sum of the 
nonthermodynamic terms equal to zero gives 

R2--- •i A2 •,•} . (30) 
This completes the description of the three-level model. We 

have not specified the form of any of the thermodynamic 
terms, which is beyond the scope of this work, but we have 
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indicated where they belong. To summarize, the open water 
production in the three-level model depends on the shear in 
the ice pack, as well as the divergence, as indicated by the data. 
Since the source term for open water is larger than that of 
standard two-level models, which use only the divergence, 
there may be no need for a minimum lead fraction or a max- 
imum ice concentration parameter. The redistribution terms 
are theoretically based; I klcrr(0) depends on the rheology, and 
W• and W2 depend on the ridging mode. The three-level 
model is still simple (it requires only two concentration equa- 
tions), but it is capable of giving the right qualitative behavior 
without a full thickness distribution. 

7. Conclusions 

We have used several hundred thousand satellite measure- 

ments of sea ice displacement to compute the opening, closing, 
and deformation of the ice cover. We make the following 
observations. 

1. On a timescale of 3 days the opening and closing can be 
parameterized quite well in terms of the deformation based on 
a plastic rheology with an elliptical yield curve (with aspect 
ratio 2). Certain other yield curves also provide a good fit to 
the data. This parameterization relates small-scale (several 
kilometer) lead activity to large-scale (several hundred kilome- 
ter) average deformation. 

2. On timescales longer than 3 days the average strain rate 
appears to decay like the reciprocal square root of time. Mea- 
surements of sea ice displacement over 30-day time periods 
with strains of the order of 10% would be required to test the 
cavitating fluid rheology, which is hypothesized to be appro- 
priate for sea ice models driven by monthly average forcing. 
The ERS I SAR data needed to make these measurements 

exist. 

3. In the parameterization of opening and closing in terms 
of deformation, the scatter in the data can be attributed to 
measurement error. It need not necessarily be explained by 
invoking a random model of ice motion. 

4. Sea ice models with two categories or levels of ice thick- 
ness can be adapted to account for the effects of shearing and 
ridging on the open water/thin ice fraction by adding an ap- 
propriate redistribution term to the ice concentration equa- 
tion. This term also prevents the ice concentration from ex- 
ceeding 1. However, three-level models that distinguish open 
water from thin ice would be much better suited to the task of 

treating open water production. We have formulated such a 
model but have not implemented it numerically. 

5. Finally, geophysical processing systems are necessary 
tools for analyzing large volumes of satellite data in a consis- 
tent and timely manner. The next generation of ice-tracking 
GPS will follow Lagrangian elements of ice and attempt to 
infer the thickness distribution of thin ice from the time history 
of area changes and a thermodynamic model [Kwok et al., 
1995]. 
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